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For the 2013 Intelligent Ground Vehicle Competition (IGVC), the University of Detroit Mercy (UDM) is 

introducing Revenant, shown on the cover page, a skid steered vehicle purchased from Clearpath Robotics. Revenant 

is the product of many significant innovations, ranging from extensive software enhancements to a completely new 

ROS-based software platform. 

as well as 

several graduate students who implemented solutions to the higher-level needs of the competition, including its new 

requirements.!

,#!)-.$/%!$%%(01&$(%.!
There were a considerable amount of advancements in the development of Revenant. Many of these 

advancements resulted from the evaluation of previous robots that the University of Detroit Mercy designed for other 

IGVCs. This year several innovative concepts were pursued and engineered in order to give Revenant, the best 

opportunities to be successful.  These developments resulted in not only a more competitive vehicle, but a vehicle 

that is more practical and adaptable for future competitions. These innovations are listed below and will be further 

explained in Section 7. 

a)  Robot Perspective Head Mount Display  

b)  Heuristics for Image Understanding and Interpretation 

c)  Data Fusion between LIDAR and Camera 

2#!3'(4-+&!51%1/-5-%&  
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The undergraduate members of the team were in a Capstone Senior Design course. The graduate team members 

took other classes covering material relevant to the project. A systematic design and development effort was followed 

that accommodated continuous improvement of the product through several cycles of effort ranging from initial 

concept development of sub-systems through design and evaluation to final integration. A framework expediting 

continuous dialogue and collaboration within the team and also with faculty was established using wikis and 

discussion threads and weekly face-to-face meetings. 

Early in the process, a thorough assessment of the literature was performed to identify algorithms potentially 

suitable to address some of the modifications in the competition rules; this was done in conjunction with a reflection 

on the performance of our last competition entry in 2012. This was followed by a detailed feasibility study that 

narrowed down the options and laid the foundation for an initial design concept formulation. As part of the design 

process, deadlines were set for the various project sub tasks. Pace of progress was enforced and assessed through 

weekly review meetings and progress reports. Slippage in terms of achievement of goals, perhaps due to unforeseen 

technical difficulties, was addressed through change in strategy or reallocation of resources.  The iterative strategy 

adopted provided an excellent framework for overall project management. 

!
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! The cross-disciplinary team was made up of two EE and two ME undergraduate students along with six graduate 

students working on specialized tasks. Task assignment was based on area of expertise, interest, and the project 

needs.  Figure 1 indicates the team structure and assumed responsibilities. The total time devoted to the project was 

approximately 3000 hours. 
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In accordance with the principle of continuous improvement, the enhancements incorporated into Revenant 

were based on IGVC performance in the previous competition year 

competition. Both faculty advisors and team members met to review our previous at the 2012 

competition and that of other teams. The document generated at that meeting served as the basis for the development 

of the design objectives for Revenant. These were: 

i. Meet all IGVC requirements. 

ii. Learn and deploy the ROS robot meta-operating system to implement algorithms. 

iii. Develop and implement a new method of local navigation to replace VFH. 

iv. Enhance the vision strategy to increase redundancy and resistance to failure, as well as to handle flag 

detection requirements. 

v. Develop an EKF-based algorithm to increase localization accuracy and permit increased mapping accuracy. 

2#E!+<7A!.F??>;G!

While Revenant was purchased, it needed to be developed and modified considerably to fit the needs of the 

competition. The systems incorporated were either designed and built in-house or specifically purchased to best suit 

the project objectives in terms of functionality, performance, cost, and development time.  Table 1 shows the 

approximate retail cost of the various sub-systems in Revenant as well as the team cost (some items were donated, 

reduced in price, or re-used from an earlier project).  
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E#!5-+L1%$+1M!.N.&-5!!
This year we aimed to put more focus on the software challenges of the competition. We bought the Husky A200 

base platform from Clearpath Robotics. It provided a strong, solid base which included wheels, motors, chassis, 

battery etc. The mechanical configuration of Revenant (pictured on the cover page) provided our team with a vehicle 

that was more durable, more accessible, and more versatile than previous competition designs. The chassis is 39 

inches in length and 26 inches wide. !"#"$%$& he 

maximum speed of the vehicle is 5 mph, which meets the speed limit requirement but is still fast enough for Revenant 

to navigate the course optimally.  

O#!-M-+&'$+1M!P!-M-+&'(%$+!.N.&-5.!
The electrical systems design was made up of enhancements to the already robust Husky chassis. Because 

several additional sub-systems were added, attendant upgrades were required that addressed safety, efficiency, and 

functionality. The design changes led to the creation of a schematic for a new and improved printed circuit board. The 

improvements incorporated into this new board are discussed below. 

!
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 To provide adequate power to all 

sub-systems of !"#"$%$&, the 

requirements of each were first assessed 

under normal and worst-case conditions. 

The power for !"#"$%$&  comes from a 

24V sealed lead acid battery and is then 

distributed via the custom-designed PCB 

to the vehicle sensors, wireless router, 

motors, and two computers. The overall 

power distribution scheme is shown in 

Figure 2.!

O#,!-H6=A;<:8=!.G7A6?!3;<A6=A8<:!>:K!.>R6AG!

 For user safety, !"#"$%$& is equipped with hard, soft and remote E-stops controlled by a mechanical button, the 

microcontroller, and the remote control respectively. The remote control, which can operate in one of two modes - 

Computer Controlled (PC) or Remote Controlled (RC) - is made up of a custom-designed PCB housed within a 

durable Futaba remote control shell. When the remote control is set to operate in PC mode, it transfers control of the 

motors to the computer (retaining E-stop control). If placed in RC mode, the operator can manually drive the vehicle.  

The transceivers that are used in  design are Aerocomm AC4490-200A transceivers. Although the vehicle 

only needs to be controlled from a maximum distance of 50ft, with the implementation of the aforementioned 

transceivers and full antenna extension, the vehicle is capable of being controlled from nearly a mile away. A twist-

to-release remote E-Stop button is integrated into the remote control unit. As an added measure of security and 

immunity to interference, we transmit encrypted data over a spread spectrum wireless link for two-way 

communication between the vehicle and remote.!

O#E!.6:7<;!.G7A6?'

' !"#"$%$& incorporates five sensors into its 

compact design: a camera, a LIDAR, a DGPS, a 

digital compass, and an IMU. Each sensor is 

enclosed in a waterproof case and firmly mounted 

to the vehicle while, at the same time, permitting 

easy removal for servicing. The following is a brief 

description of the sensors that are used by !"#"$%$& 

as shown in Figure 3. 
!"#$%"&'The AVT Stingray F-

camera was selected as the vision sensor for this 

vehicle. This camera uses the IIDC IEEE 1394B 

24V Supply

Husky Power Sys USB 200 DSLIDAR DCDC USB 150

Laptop

Camera

12V Regulated

Minibox

 Sparton 
Compass

12V Regulated 5V Regulated

Lights
USB Hub

5V USB

RC E-Stop DGPS

"#$%&'!2)!314'&!5#60&#7%0#1. 

"#$%&'!8)!9:60',!;1,,%.#<+0#1. 
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protocol to relay images, which is ideal for machine vision applications, because the frames are uncompressed and 

various optio

progressive scanning and high frame rates minimize motion blurring. The CS-Mount lens design enables the camera 

to accept a very wide-angle low-distortion lens, which provides a 1250 field-of-view. This makes navigation 

heuristics easier to implement.'

()*+,&'A 2700 SICK LMS111 LIDAR unit was employed for the purposes of obstacle detection. The unit is capable 

of collecting data over a 270° field-of-view with 0.25° resolution, a maximum range of 20 m, and a 25 Hz scanning 

rate. '

*-./&'To obtain positioning data in th -LB Plus DGPS system was 

o provide up to +0.1m accuracy. This 

system provides data at a rate of 20 Hz, which is adequate for expected speed and desired performance.'

*0102"3'45#6"77&!"#$!%&'()*+!AHRS-8 (Altitude Heading Reference System) was integrated into the vehicle to help 

determine heading. The AHRS-8 provides accurate heading readings by eliminating external magnetic disturbances 

that affect heading accuracy, it also provides 3D absolute magnetic field measurement and full 360° tilt-compensated 

heading, pitch, and roll data. This enables the compass to provide a heading accuracy of 0.2° and updates at 20 Hz, 

 

=>?) The KVH CG-5100 IMU was generously donated to our team by KVH Corporation; this inertial measurement 

unit (IMU) incorporates highly accurate fiber optic gyro (FOG) based sensors coupled with industry proven MEMS 

accelerometers. This sensor was added to the interior of the robot chassis and will also be used to determine heading, 

and is able to provide an accurate reading, with only 1° of drift per hour and a refresh rate up to 100Hz. 

O#O!)>A>!+<??F:8=>A8<:!$:A6;R>=67 

 The various electrical and electronic systems were interfaced in the manner illustrated in Figure 3. The AVT 

Stingray camera is connected via Firewire 1394B to the Dell computer. The DGPS system is connected to the internal 

mini-box computer through a USB interface using an inline RS-232-to-USB adapter. The SICK LMS111 LIDAR is 

connected to the computer via an Ethernet link. The SPARTON AHRS-8 digital compass is also connected to the 

mini-box and uses RS-232; finally, both of the computers are networked via gigabit Ethernet. 

S#!.(T&U1'-!)-.$/%!  

The primary goal in the software area this year was to develop innovations in conjunction with the use of the 

ROS environment.  Accordingly, a new software strategy was developed and implemented, including a modified 

image interpretation and heuristics strategy and an improved mapping and localization module. This was 

accomplished through the use of identifying problematic vehicle behavior from the previous year and using the ROS 

development environment to discover and implement new solutions in those areas. After initial algorithm 

development and testing, new tools contained in ROS were used to validate the algorithms through simulation, finally 

deploying the successfully validated algorithms and testing them on the new vehicle platform.   

!
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In previous years, the UDM team has used the Player/Stage environment as the framework for the software 

implemented on the robot. This year, ROS will be used as the primary development environment. As in previous 

years, MATLAB, set up to communicate to ROS through an IPC bridge, will continue to be used for execution of 

image processing algorithms for the associated ease of development. ROS is an open source robotics platform that 

operates on a peer-to-peer model; this structure provides some advantages over the client-server model of 

Player/Stage. In peer-to-peer networks all nodes can communicate directly with each other, without invoking a 

centralized server. As the scale of the system increases to support more nodes, the load on the server remains 

manageable.  

Revenant s software development architecture utilizing ROS is shown in the Figure 4 below. ROS has three 

layers of functionality. At the lowest (graph) level ROS operates on the basis of a network of nodes. These are 

modular processes that execute a specific task (such as read in and convert GPS data, transform coordinate frames, 

send velocity commands, etc.). Nodes communicate with each other by sending messages, using topics with specific 

names. Nodes can either publish messages to a specific topic or subscribe to one or more topics. The processing of 

these messages is used to direct the algorithmic flow, as needed. 

The file system level of ROS consists of Packages and Stacks; Packages are units that may contain ROS nodes, 

libraries, or any other type of related file, and Stacks are collections of Packages making up a higher level 

application. The third and outermost level of the ROS universe is the Community level, which consists of the online 

distributions and repositories of code addressing various applications. 

 
 

The ROS environment is effective not only for final implementation but also for simulation as it allows for the 

use of the Stage simulator.  Throughout the progression of algorithm development, Stage accommodates testing via 

simulation. The ROS/Stage simulator is a representative and comprehensive simulation environment, complete with 

models for the robot, obstacles, GPS, camera, LIDAR, etc.. Stage also provides a graphical depiction of robot motion 

within its environment, which offers a powerful tool to gauge the effectiveness of algorithms.!

S#,!)>A>!1=VF878A8<:!>:K!3;<=6778:9 
With a steady stream of data from numerous sensors being made available, multiple computers are used to 

distribute tasks and ensure that all data is acquired and processed in a timely manner. The task distribution on 

!"#"$%$&'is carried out as discussed below. 

"#$%&'!@)!A-9!B&<C#0'<0%&'!+.D!A'61%&<'6 
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Sophisticated vision algorithms are central to a successful strategy for the Autonomous Challenge due to the 

complex obstacle, lane, and terrain features present. If, when implementing these algorithms, the associated 

computational complexity causes the overall image frame processing rate to drop too low, the vehicle may not be 

capable of operating effectively at higher speeds. In order to favorably address this tradeoff, a multi-pronged strategy 

to increase the frame rate was adopted. !"#"$%$& distributes its computational tasks over two computers, one of them 

robot chassis. Using ROS facilitates setting up this distributed 

computing architecture and provides a wealth of existing open-source code to draw from. The top computer is 

entirely devoted to running components of the overall vision algorithm. This computer utilizes the MATLAB® 

parallel processing toolbox to spawn multiple workers, which exploit parallelism in several of the IP routines (e.g., 

color segmentation and adaptive thresholding) by deploying the algorithm over multiple processor cores. The second 

computer is responsible for running the navigation and path planning algorithms as well as handling the data from the 

vehicle's sensors. 

S#2!$?>96!3;<=6778:9! 

In order to address the increasing complexity of the vision task in the Auto-Nav Challenge course, !"#"$%$& has 

adopted a new image processing methodology. This strategy combines basic image processing techniques to extract 

white lane lines from images with development of higher-level image interpretation and heuristics. The image 

heuristics module retains information from previous image frames in order to track the lane lines including 

maintaining a sense of the left lane line versus the right lane line. This in conjunction with a mapping strategy allows 

for accurate goal selection throughout the lane following portion of the Auto-Nav Challenge.  

 

 

The images to be processed were captured in RGB format, which represents the image color components as red 

(R), green (G), and blue (B). In order to develop a process of lane line extraction, images were analyzed using the 

Matlab function improfile. This function shows the intensity values of the red, green, and blue planes along selected 

line segments. Figure 5 shows an example of a profile taken of an image. The graph on the right side of Figure 5 

corresponds to the intensity values of red, green, and blue in the pixels along the red line segment that is 

"#$%&'!E)!3&1F#G'!1F!=,+$'!H#.'!9'$,'.0 
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superimposed on the image. This profile shows that the red plane and the blue plane are only similar in regions where 

the image is white. In most other areas of the image the red plane is about two times as large as the blue plane. For 

this reason the basic image processing used 2*Blue  Red in order to highlight white and suppress all other colors in 

the image. This technique provides a grayscale image which is then processed further using regional thresholding, 

morphology, and connected component analysis in order to produce a clean binary image. These techniques could be 

interchanged depending on the conditions and the algorithm can be tailored to fit specific course attributes.  

Once the binary images were obtained, a series of Hough transforms were applied. This process results in 

extraction and tagging of the left and right lane lines, when available, which is then subjected to heuristic tracking. 

Maintaining the identity of the left and right lane lines is valuable for awareness of the forward direction for robot 

motion. The Hough transforms also fills in the intermittent and broken binary images that result from basic image 

processing. The resultant outputs of straight line segments are also more convenient to place on a map. !

S#E!/<>H!.6H6=A8<: 

 for the course. For the 

Navigation portion of the Auto-Nav Challenge this is relatively easy, as forward is towards the next waypoint. 

However, in the Autonomous portion of the Auto-Nav Challenge, the forward direction is less easy to determine, 

since it requires the ve

established from the results of the vision algorithms, which are not 100% reliable. Further complicating the situation 

is the presence of course features such as switchbacks and ramps, which can fool the robot into turning around. 

The combination of image heuristics and mapping provide a basis for creating a goal selection algorithm in the 

Autonomous (lane line) portion of the Auto-Nav course. Tracking the identities of the left and right lane lines as the 

robot moves can be used to continually be aware of the forward direction. The map development also helps through 

knowledge of where the robot has been, which additionally helps maintain forward motion. Thus we can realize 

improved performance through the redundancy of simultaneously using both techniques. 

S#O!/H<B>H!%>D89>A8<:!W3>AX!3H>::8:9Y! !)ZM8A6!

Performance in the Navigation portion of the Auto-Nav course is considerably enhanced if global path planning 

is utilized, which results in optimal routes and avoidance of traps. Given a set of waypoints in the Navigation portion 

of the course, they are first sequenced for optimal traversal. D*Lite is a very effective algorithm to use for planning a 

path through unknown terrain. It can work off a partially complete map of the field, while accommodating map 

discovery through re-planning as the robot moves. Using the next waypoint as input, the D*Lite algorithm provides 

an optimal path. Suitably positioned breadcrumbs are identified along this path. The local navigation algorithm 

(described below) then drives the robot through those breadcrumbs. 

S#S!M<=>H!%>D89>A8<:!W);8D8:9!AX6!3>AXY! !.%)!56AX<K 

This year, along with the change to ROS, came changes in the local navigation strategy. In previous years, our 

team used a variant of VFH, which has proven difficult to tune. Specifically, its parameters have to be tuned through 

trial-and-error in actual runs; also, the parameters that work best for the Autonomous (lane line) portion of the course 

do not do as well in the Navigation (open-field) portion. The new Auto-Nav Challenge makes it difficult to utilize 
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two sets of parameters in a single run. Through extensive research, we came across a method that is well suited for 

the new course characteristics. The Smooth Nearness Diagram algorithm, a relatively new variation of the Nearness 

Diagram navigation method, is a gap-tree based navigation approach developed for use in narrow spaces with a high 

obstacle density. 

The Smooth Nearness Diagram method allows the robot to navigate a course and avoid obstacles by using the 

obstacle data (read in from the laser scan and map) to create a nearness diagram from which to determine navigable 

regions. A nearness diagram is a plot showing obstacle nearness per sector (where sectors are defined by the 

resolution of the LIDAR) with respect to 6 below, shows an example of a possible situation 

a robot could encounter with various obstacles surrounding it. Figure 7 shows the nearness diagram that results from 

such a situation; where the higher the amplitude of a given sector, the closer the obstacle in that sector is to the robot.  

         

! T89F;6!S!I!3<A6:A8>H!-:D8;<:?6:A! ! ! T89F;6![I!%6>;:677!)8>9;>?!
Analysis of this nearness diagram allows the robot to locate navigable regions. The first step is to determine 

gaps; gaps are defined in the algorithm as discontinuities in the nearness diagram that are greater than twice the robot 

radius, ensuring enough room for the robot to pass. Once the gaps are determined, the algorithm then looks for 

valleys, which are navigable regions defined by two consecutive gaps, which are more than twice the robot radius in 

width. For each valley, a rising gap angle and another gap angle are determined; the rising gap is the angle 

corresponding to the sector that contains the gap closest in distance to the goal heading, and the other gap is the angle 

corresponding to the sector containing the second of the two gaps in the valley.  

With this information, the algorithm can now select the valley that makes the best progress toward the goal, by 

comparing the distance of  to the goal; the valley with the closest rising gap to the goal 

is called the best valley. Once a best valley is determined, a safe rising gap angle is determined by deflecting the 

rising gap angle from the obstacle that defines the gap.  

This adjustment to the rising gap angle will point the robot in a direction such that the obstacle creating the rising 

gap will not enter the safety distance (a specified radius around the robot into which obstacles may not enter) 

as it moves toward the gap. However, in some cases, where the best valley is narrow, it is possible that the deflection 

of the rising gap angle will leave the heading pointing too close to the other gap angle; often in these cases it is better 

to direct the robot towards the angle which bisects the best valley, ensuring the safety of the robot as well as 

providing a direction that still takes the robot closer to the goal. The desired heading for travel will then be set equal 

to whichever of the safe rising gap angle and bisecting angle is closer to the original rising gap angle. 
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Finally, a last check is done to ensure that no obstacles within view enter the  is done 

by 

to the robot. If any obstacles are found to be within the safety distance, a second deflection coefficient is computed 

from a weighted sum of the threat level measurements of obstacles found to be within the safety distance. The final 

heading for the robot is then calculated by adding the deflection adjustment to the desired heading. 

The final heading value represents the direction the robot will travel in to the point decided by the algorithm; this 

value will then be used by the trajectory planner to determine optimal angular and linear velocities to get the robot to 

the desired point. 

S#[!M<=>H8\>A8<:!.A;>A69G!!

In order to optimize the performance of Revenant ry to 

establish a framework for localization to provide an accurate pose estimate; this is the first year that such a formal 

framework will be incorporated into the UDM IGVC software strategy. The framework for this system will be 

comprised of a ROS package husky_ekf, containing a node that subscribes to the measurement messages published by 

ders, as well as the sensors seen in Figure 8.  

 
  

 Localization is implemented through the use of a Sequential Update Extended Kalman Filter. Given consistently 

available GPS data, an Extended Kalman Filter which fuses the DGPS and digital compass data with the robot s other 

relative sensors (such as the odometry and IMU) can be used to provide an accurate pose estimate; this method is a 

relatively mature area of study and is well documented in the literature.  

 The Sequential Update Extended Kalman Filter was chosen as a method of localization because it has been 

shown to produce unbiased, minimum error estimates when the state equations for the system and the measurements 

are largely linear, and the error is an independent Gaussian noise process, which is in fact the case for our system, as 

the only nonlinear characteristics will arise from the system model that reflects the encoder readings.  

 This approach also accommodates asynchronous inputs to the filter resulting from sensors having different 

refresh rates. Multiple sensor measurements are incorporated into the observation matrix by using a sequential update 

of the state for each of the different measurements, whenever they become available, with each sensor observation 

considered an independent event. Also, the overall error for the state output of the Kalman filter is smaller than that 

of the best of the individual sensors, which means that the Kalman estimate is always an improvement. 

 The non-linear relationships resulting from the system model are handled in the EKF by replacing 

several matrices in the KF equations with Jacobians. 

"#$%&'!I)!H1<+G#/+0#1.!J+&D4+&' 
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S#]!5>@@8:9!

The mapping algorithms used by Revenant are designed to provide local navigation, global navigation, and the 

image heuristics module current and historic information as needed for the basic operation of each of these 

algorithms. For this reason one general map is kept with a complete set of information and several other maps are 

kept containing specific information as required by these algorithms (a map for obstacles, a map for lane lines, a map 

for position, etc.). The generated maps use different values in each cell in order to represent different properties. The 

general map includes all the objects of interest needed for navigation; these objects include lane lines, obstacles, red 

and blue flags, and previous positions. Figure 9 shows a side-by-side comparison of Stage simulation environment 

and the associated map generated by driving a vehicle manually through the environment.  !

[#!)-.$/%!$%%(01&$(%. 

[#"!'<B<A!36;7@6=A8D6!L6>K!5<F:A!)87@H>G!
 A key innovation and debugging tool that was used this year is a Robot Perspective Head Mount Display. This 

unit allows the user to remotely subscribe to the topics published on ROS by Revenant; for instance, topics such as 

the raw camera data and outputs of the image processing algorithms. These topics can be overlaid and viewed in real 

time to see exactly what the robot is seeing, how it is interpreting the images, and what causes it to fail. This is a 

powerful diagnostic tool for initially getting Revenant algorithms to work and subsequently fine tuning their 

performance. All aspects of operation such as the local navigator, image analysis and interpretation, path planning, 

etc. can be debugged through the robot perspective display. 

[#,!$?>96!L6F;87A8=7 

 Correct lane detection is a difficult problem even with high-level image processing strategies. In some cases such 

as switchbacks or in portions of the course where there are a large number of barrels the lane lines can be lost. In 

these situations it is beneficial to apply a deeper level of understanding to image frames, so that even when lane lines 

or portions of lane lines are lost, the robot still has an idea of where it is on the course and where it needs to go. 

"#$%&'!K)!90+$'!>+LL#.$!9#,%G+0#1. 
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Essentially the goal is to tide over momentary problems in the form of incorrect results by using heritage information 

from the immediate past, which leverages requirements of lane continuity. Figure 10 shows an overview of the 

algorithm used to track the left and the right lane lines. The image was broke down into a series of sub images on 

which Hough transforms were performed. These operations resulted in masks which when summed together created 

straight line representations of lane images. The results of this algorithm on several images can be seen in Figure 11 

where the left and right lane lines are differentiated using different colors. 

 
 

!

!
!

!

[#2!M$)1'!+>?6;>!)>A>!TF78<:!

! Combining information from different sensors is a great way to improve the processing of information; in 

particular, the inherent difficulties associated with image processing can be mitigated by LIDAR data in conjunction 

with camera information. Because the LIDAR is an extremely reliable sensor for detecting 3D obstacles it facilitates 

the processing of camera images. Obstacles such as barrels and saw horses can create false positives for the presence 

"#$%&'!(M)!=,+$'!J'%&#60#<!BG$1&#0C, 
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of white lane line objects in a scene. The first step is to calibrate the camera and LIDAR data as well as transfer them 

to the same coordinate frame. Once this is done, the LIDAR information can be placed on images. Obstacles that 

were seen as roundish by the LIDAR can be interpreted as barrels and an associated mask is created for the image. 

This sets every pixel value where there is a barrel imprint to zero (essentially the barrel is removed from the image). 

This eliminates the possibility of white stripes on barrels creating false positives for lane lines. Furthermore, it 

reduces the computation time for image processing, which can avoid processing those areas. Figure 12 shows a 

simulated scene with lane lines and barrels and the associated mask produced. This type of mask can be directly 

applied to images captured by the camera and will improve the reliability and stability of the basic image processing 

steps. 

!

]#!.N.&-5!$%&-/'1&$(% 

This project was divided into subtasks to facilitate development and assignment of tasks to individuals. The ROS 

environment is suitable for a breakdown of tasks because individual students can develop separate nodes that publish 

data and subscribe to othe  Of course, team members need to agree on the data format, but ROS 

essentially supports the independent development of algorithms for the various tasks. All hardware interaction was 

done through the capabilities available in ROS. 

Software system integration for Revenant was carried out using a test course built on campus to represent 

possible scenarios that might be encountered at the IGVC. The physical integration of the subsystems, to fit properly 

and make efficient use of space, was given careful consideration during the chassis design process, by taking their 

dimensions and locations into account, including the space needed to accommodate connectors and wires.!
^#!41*. 

 Our goal for the JAUS challenge was to implement a system that would meet the SAE JAUS requirements, while 

at the same time be compatible with each of the research robots used in our Advanced Mobility Lab. We chose to 

implement JAUS using Jr Middleware. It is SAE AS-4 AS5669A compliant software that handles routing JAUS 

messages on a network. It provides an API that allows a program to create and send out a message through the use of 

a function call.  

"#$%&'!(2)!H=5BAO;+,'&+!5+0+!"%6#1. 



 

14 

Our JAUS implementation interfaces with ROS to obtain information, and perform JAUS-related tasks. The 

advantage is that our code could be compiled and run on any system that uses ROS. To verify the functionalities of 

the system a COP program was written that would send out the messages expected at the competition and display the 

incoming messages from our system. This allowed us to verify the functionality of messages that are not supported 

this year by the JAUS validation tool. 

"_#!3-'T('51%+-!
"_#"!.@66K 

The maximum speed of !"#"$%$& is approximately 5mph.!

"_#,!'>?@!+H8?B8:9!1B8H8AG!

calculations and testing have revealed that !"#"$%$&'has ample torque to ascend an incline with a gradient of up to 

30% (16.7°) without stalling. According to the IGVC rules, the vehicle needs only to be capable of climbing a 15% 

(8.5°) incline. 

"_#2!'6>=A8<:!&8?6 

For the Autonomous Challenge, it takes approximately 100 ms (10 frames per second) to run the system 

algorithms (based on software timing estimates). At 5 

mph, which is the maximum speed for !"#"$%$&, this 

cycle time translates to a decision being made 

approximately every 22 cm of travel. In the 

Navigation Challenge, the algorithms take 

approximately 40 ms to complete. At the 5 mph speed 

limit, this cycle time corresponds to a decision being 

made approximately every 9 cm. 

"_#E!`>AA6;G!M8R6!

Table 2 lists the power consumed by the vehicle 

components under normal as well as worst-case 

operating conditions. Using these values, it is 

expected that the vehicle will be able to run for 

approximately 3 hours under normal operating 

conditions and slightly less than 2 hours under the 

worst-case conditions. These estimates have been 

exceeded in actual runs. A battery charger is also 

positioned inside the vehicle to enable the battery to 

be recharged, whenever needed. 
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"_#O!)87A>:=6!>A!QX8=X!<B7A>=H67!>;6!K6A6=A6K 

The LIDAR unit on the vehicle is capable of detecting objects at a distance of 20 meters; for !"#"$%$&, the 

LIDAR is configured for a range of 10 meters.  The camera is set up to view a shorter range to reduce glare and 

horizon effects (approximately 5 meters). !

"_#S!1==F;>=G!<R!>;;8D>H!>A!Q>G@<8:A7 
The waypoints at the competition will be designed as concentric 2m and 1m radius circles centered on the GPS 

coordinates of the waypoints.  DGPS system provides an accuracy of + 0.1 meters in DGPS mode, and + 

0.01 meters in real-time kinematic (RTK) mode. It can be seen that this accuracy is more than sufficient. This has 

also been verified through actual experimentation.!

""#!.1T-&Na!'-M$1`$M$&Na!)*'1`$M$&N!

' !"#"$%$&, with its Husky A200 chassis, is a rugged and high performance vehicle, which includes several 

features that not only contribute to its performance, but also increase its safety, reliability, and durability. Three E-

Stop systems are implemented to ensure that the vehicle can be stopped safely, quickly, and reliably. These are the 

soft, hard, and remote E-Stops, which are controlled by the microcontroller, the manual mechanical button on the 

front of the vehicle, and the remote control, respectively. The vehicle is also weatherproofed such that light rain will 

not cause electrical short circuits. This involves the incorporation of NEMA enclosures for the power distribution 

system, which are fit inside the shell that surrounds the vehicle chassis and the various components. All additional 

circuits are carefully fused to prevent electrical damage. !"#"$%$&'is also equipped with a lockout mode, which 

provides yet another E-stop method, for periods in which the vehicle is left unattended; when in lockout mode, the 

robot will still power on but motors will not receive commands to drive. 

 !"#"$%$&'

operation. The first watchdog is a hardware watchdog, which prevents vehicle operation in the event of a hardware 

failure. Every 500 ms the computer must send a specific message to the motor controller. If the message is not sent, 

an E-Stop is triggered. In the event of a hardware failure or computer crash, the controllers will not receive the 

message and the vehicle will stop. The second watchdog is a software watchdog, to prevent vehicle operation in the 

event of a software failure. The motor driver will expect a new velocity command from the software algorithm at 

least every 2 seconds. If such a command is not received, the driver will halt the motors until a new command is 

received. The third watchdog monitors smooth wireless data transmission between the remote control and the vehicle. 

Any failure of the remote control or jamming of the wireless signal will trigger the E-Stop, acting as a hardware 

watchdog. 

",#!+(%+M*.$(% 

The UDM team is excited at the prospect of competing at the 2013 IGVC with Revenant. 

incorporated many changes to Revenant this year including improved localization and mapping strategies, better 

image processing techniques supplemented by heuristics, and a new local navigator. We hope that the design features 

added to Revenant will make us very competitive and successful at the competition. 


